THE SYNTHESIS AND STRUCTURE OF NOVEL FERROCENE BIS-CROWN ETHERS

PAUL D. BEER

Department of Inorganic Chemistry, The University of Birmingham, Birmingham B15 2TT (Great Britain) (Received July 3rd, 1985)

Summary

The synthesis of novel ferrocene bis-crown ethers is reported. Variable temperature ¹³C NMR studies on these compounds reveal a common intramolecular dynamic process involving rotation about the N-CO bond.

Several groups of workers have recently reported the syntheses of macrocyclic compounds containing the ferrocene unit as an integral part of the macrocyclic skeleton [1-6]. These multidentate ligands incorporate a crown ether framework designed to bind guest metal cations in close proximity to the iron metallocene atom. Hence these compounds can facilitate the study of metallocene metal atom-guest metal cation interactions at short interatomic distances using electrochemical and spectroscopic techniques.

The condensation of 1,1'-bis(chlorocarbonyl)ferrocene (1) [7] with the aza-crown ethers 2 and 3 [8] in the presence of triethylamine gave after column chromatography (alumina, 99% CH_2Cl_2 , 1% MeOH) the respective ferrocene bis-crown ethers 4 (85% yield, m.p. 69–70°C orange crystals) and 5 (80% yield, m.p. 65–66°C orange crystals) (see Scheme 1). Both new bis-crown ethers gave satisfactory elemental analyses, ¹H NMR and molecular weights by mass spectrometry.

The ${}^{13}C$ NMR of 4 and 5 were recorded at various temperatures and the details of the spectra are reported in Tables 1 and 2.

At -20° C the ¹³C NMR reveals two absorptions for the respective N-CH₂ carbons of 4 and 5. On warming these individual signals begin to broaden and at temperatures of 46.3°C for 4 and 46°C for 5 coalescence is observed (Fig. 1). Also the respective eight and ten OCH₂ carbon absorptions of 4 and 5 collapse to give simplified broadened peaks.

These observations suggest that at the coalescence temperatures and above the aza-crown ether rings of 4 and 5 are no longer fixed relative to the respective carbonyl groups and rotation about the amide N-CO bond is fast on the NMR timescale (Fig. 2).

The ΔG^{\ddagger} values for this intramolecular dynamic process common to both 4 and 5 were calculated using initially the Gutowsky equation [9]:

$$k = \pi \Delta \nu / \sqrt{2}$$

where $\Delta \nu$ is the frequency separation of resolved signals at the temperature at which

TABLE 1

Assignment	δ (-20°C)	δ (20°C)	δ (55°C)	
N-C	49.62	49.84	49.6 br	
N-C	50.32	50.78		
0–C	68.21			
	69.21	69.14		
	69.36	70.09		
	69.46	70.20		
	69.50	70.67	69.9 br	
	69.61	71.59	70.8 br	
	70.00	71.92	71.4 br	
	71.10		71.6 br	
Ferrocene-C	71.32 ^a			
	71.45 "			
Ferrocene-C(<i>ipso</i>)	78.21	79.30	79.37	
C=0	169.27	169.35	169.42	

VARIABLE TEMPERATURE ¹³C NMR DATA FOR **4** FROM BROAD BAND DECOUPLED AND DEPT SPECTRA [4] (solvent CDCl₃; ref. TMS)

^{*a*} Integrates for two carbons.

TABLE 2

VARIABLE TEMPERATURE ¹³C NMR DATA FOR **5** FROM BROAD BAND DECOUPLED AND DEPT SPECTRA [4] (solvent CDCl₃; ref. TMS)

Assignment	δ (-20°C)	δ (20°C)	δ (55°C)
N-C	47.22	47.53	48.3 br
N-C	49.20	49.43	
0-C	69.08		
	69.62		
	69.87	69.46	
	70.11	69.90	
	70.18	70.37	69.9 br
	70.26 ^a	70.52	70.6 br
	70.31 ^a	70.66	70.7 br
	70.42	71.66	70.9 br
	, , , , , , , , , , , , , , , , , , ,	71.80	
Ferrocene-C	71.64 ^a		71.58
	71.70 "		71.88
Ferrocene-C (ipso)	79.26	79.83	79.41
C=0	169.71	169.81	169.86

^a Integrates for two carbons.

Fig. 1. Expanded variable temperature broad band decoupled ${}^{13}C$ NMR spectra of the N-C region of 4 at 100 MHz in CDCl₃.

316

Fig. 2. Rotation about the N-CO bond in 4 (n = 1) and 5 (n = 2).

the amide bond rotation was stopped on the NMR timescale. The energy barriers ΔG^{\ddagger} were then obtained from the equation [10]:

 $\Delta G^{\ddagger} = 2.303 \ RT_{c} (10.319 - \log_{10} k + \log_{10} T_{c})$

where R 8.314 J mol⁻¹ deg⁻¹ and T_c is the respective coalescence temperatures. ΔG^{\ddagger} values for rotation about the amide bond in **4** is 65 kJ mol⁻¹ and **5** is 62 kJ mol⁻¹. These results are in good agreement with the barriers to rotation about conventional amide linkages [11]. The coordination chemistries of these ferrocene bis-crown ethers are currently under investigation.

Experimental

¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra at 67.8 and 100 MHz using TMS as internal standard.

1,1'-Bis(chlorocarbonyl)ferrocene, aza-15-crown-5 and aza-18-crown-6 were prepared according to literature methods [7.8]. Toluene was dried by distillation from sodium.

1,1'-Bis(1,4,7,10-tetraoxa-13-azacyclopentadecane-13-carbonyl)ferrocene (4)

A solution of 1,1'-bis(chlorocarbonyl)ferrocene (0.71 g, 2.28 mmol) in dry toluene (70 ml) was added dropwise over 30 min to a stirred solution of aza-15-crown (1.0 g, 4.56 mmol) in toluene (100 ml) containing triethylamine (0.46 g, 4.56 mmol). When addition was complete stirring was continued for 1 h and the solution filtered. After removal of solvents the crude product was chromatographed on a column of alumina using methylene chloride/1% methanol. An orange band was collected and after solvents were removed recrystallisation from diethyl ether/hexane gave 4 (1.31 g, 85%) as orange crystals, m.p. 69–70°C. Anal. Found: C. 56.9; H. 7.4: N, 4.4, $C_{32}H_{48}N_2O_{10}$ calcd.: C. 56.8; H. 7.1: N, 4.2%. *m/z* 676.

¹H NMR (CDCl₃): δ 3.46–3.63 (m, 40H), 4.21 (t, J 1.7 Hz, 4H) and 4.54 (t, J 1.7 Hz, 4H).

1,1'-Bis(1,4,7,10,13-pentaoxa-16-azacyclo-octadecane-16-carbonyl)ferrocene (5)

The procedure for the preparation of **5** followed that described for **4**. A solution of 1,1'-bis(chlorocarbonyl)ferrocene (0.295 g, 0.95 mmol) in dry toluene (50 ml) was added dropwise over 30 min to a stirred solution of aza-18-crown-6 (0.5 g, 1.9 mmol) in toluene (70 ml) containing triethylamine (0.19 g, 1.9 mmol). When addition was complete stirring was continued for 1 h and the solution filtered. Removal of solvents gave the crude product which was chromatographed on an alumina column using methylene chloride/1% methanol. Recrystallisation from diethyl ether/hexane gave **5** (0.58 g, 80%) as orange crystals, m.p. 65–66°C. Anal. Found: C, 56.7; H, 7.0; N, 3.4. C₃₆H₅₆N₂O₁₂ calcd.: C, 56.4; H, 7.3; N, 3.7%. m/z 764.

¹H NMR (CDCl₃): δ 3.60–3.77 (m, 48H), 4.33 (t, J 2 Hz, 4H) and 4.65 (t, J 2 Hz, 4H).

Acknowledgements

The author thanks the SERC for use of the high field NMR Service at the University of Warwick.

References

- 1 S. Akabori, Y. Habata, Y. Sakamoto, M. Sato and S. Ebine, Bull. Chem. Soc. Jpn., 56 (1983) 537.
- 2 M. Sato, M. Kubo, S. Ebine and S. Akabori, Bull. Chem. Soc. Jpn., 57 (1984) 421.
- 3 P.D. Beer, P.J. Hammond and C.D. Hall, J. Chem. Soc., Chem. Commun., (1983) 1161.
- 4 P.D. Beer, J. Elliot, P.J. Hammond, C. Dudman and C.D. Hall, J. Organomet. Chem., 263 (1984) C37.
- 5 B. Czech, A. Ratajczak and K. Nagraba, Monatsh. Chem., 113 (1982) 965.
- 6 P.D. Beer, J. Chem. Soc., Chem. Commun., (1985) 1115.
- 7 H.J. Lorkowski, R. Pannier and A. Wende, J. Prakt. Chem., 35 (1967) 149.
- 8 M.R. Johnson, I.O. Sutherland and R.F. Newton, J. Chem. Soc., Perkin Trans. I, (1979) 357.
- 9 H.S. Gutowsky and C.H. Holm, J. Chem. Phys., 25 (1956) 1228.
- 10 S. Gladstone, K.J. Laidler and H. Eyring, The Theory of Rate Process, McGraw-Hill Book Co. Inc., New York, 1941, Chap. 1.
- 11 E. Buhleier, W. Wehner and F. Vögtle, Chem. Ber., 112 (1979) 559.